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Introduction

Alfalfa (Medicago sativa L.) is a perennial forage legume with global

: Figure 2. Overview of sequencing platforms and assembly strategies pursued

: Figure 5. Integration of gene models, differential gene expression, SNPs and
: to generate the tetraploid alfalfa genome sequence.

allele frequencies anchored to the reference sequence visualized with JBrowse.
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+ The symbiotic nitrogen fixation capacity of alfalfa, high biomass yields and scatiolds i

forage quality make alfalfa an excellent source of digestible energy and
protein grown in pastures or harvested for hay and silage production.

Genetic and genomic resources can be used to accelerate the genetic gains

. Table 1. Sequencing platforms and assembly strategies used to generate the
: tetraploid alfalfa genome sequence.

Figure 6. Identification of genes and molecular markers in a target genomic region.
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Alfalfa genome sequences

Medicago truncatula genome sequence (Mt4.0) (Young et al. 2011; Tang et al.
2014).
Cultivated alfalfa at the diploid level (CADL) genome v1.0 (Fajardo et al.

. Figure 3. A. Dot plot comparing orthologous regions of Mt4.0 pseudomolecules and
. the 32 super-scaffolds from the proximity-guided assembly of the tetraploid alfalfa
! genome sequence. B. Chromosomal distribution of the 32 alfalfa super-scaffolds.

Figure 7. Gene expression profiles of organic acid transporters in roots of Altet-4
(Al tolerant) and NECS-141 (Al sensitive) after 96 hrs of growth at pH 4 + Al.
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Sequencing of the tetraploid alfalfa genotype NECS-141 (2n=4x=32) was
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: Figure 4. Overview of the ABT to integrate genomic, genetic and phenotypic
: data to advance practical plant breeding applications.
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10,200 bp (Monteros et al. 2015). Most recently, the Proximo™ Hi-C method \
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approaches were used to assemble the sequences generated from different
technologies (Simpson et al. 2009; Luo et al. 2012; Kajitani et al. 2014; Chin
et al. 2016; Berlin et al. 2015; Koren et al. 2017) into 32 super-scaffolds (Table
1; Fig. 2; Fig. 3).
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Genotypic data: Genotypic data from tetraploid alfalfa populations are
aligned against the reference genome in JBrowse and can be visualized in the
form of allele frequencies. Changes in allele frequencies due to selection from
breeding can be visualized for different genotypes (Fig. 5) and tracked
throughout the breeding process.

Molecular markers: SSRs and SNPs distributed throughout the genome and
those associated with QTLs for abiotic stress tolerance (Han et al. 2011; Khu
et al. 2013; Li et al. 2014) were integrated into the ABT (Fig. 4; Fig. 5) and can
be used to identify key genes and markers in a target genomic region to
facilitate molecular breeding applications (Fig. 6).

Gene expression atlas (GEA): A web-based gene expression atlas that
integrates RNA-sequence data using the DESeq2 and Salmon software (Love
et al. 2014) from contrasting alfalfa genotypes (O’Rourke et al. 2015) and
those grown under abiotic stress (pH, presence of aluminum and drought),
enables the query and visualization of differentially and co-expressed target
genes (Fig. 7; Fig. 8).

Phenotypic data: Diverse alfalfa germplasm including Pl accessions from the
alfalfa core collection (Basigalup et al. 1995) were evaluated in the field and
used to collect biomass and other agronomic traits. Individuals can be sorted
and ranked by multiple traits (Fig. 9) to identify the best performers for further
characterization and population development.

Other functionalities: The ABT also allows users to search for specific
markers, gene targets, genomic regions, perform BLAST searches using DNA
sequences and/or candidate genes and perform in silico PCR.

+ We have generated assemblies of the diploid and tetraploid alfalfa

genomes using multiple approaches.

The alfalfa gene expression atlas (GEA) of the ABT enables users to

query and assess gene expression of alfalfa genotypes tolerant vs.

sensitive to abiotic stress factors to further understand stress tolerance
mechanisms.

« Users can utilize the ABT to search and retrieve genomic and genetic
information to implement molecular breeding strategies using SNPs
targeting differentially expressed genes to increase the frequencies of
favorable alleles associated with agriculturally-relevant traits.

« Access to phenotypic data from diverse alfalfa germplasm collected in the
field facilitates ranking of genotypes based on multiple traits (selection
index) and identification of potential parents to generate breeding
populations.

5 Ongoing Activities

+ Pursue optical mapping of tetraploid alfalfa and integrate alfalfa datasets

with other legume species leveraging existing databases and initiatives
including the Legume Information System and Legume Federation.

: + Generate genotypic data of additional alfalfa populations evaluated at

multiple locations to integrate with sensor-based phenotypic data to
facilitate selection of parental lines for population development.

: « Expand content of the ABT by integrating curated data from collaborators

and partners to advance opportunities for alfalfa improvement.
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